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Abstract
Wildfires are common each year across the world and can
have a significant impact on an ecological area. Some eco-
logical regions can see vegetation regrow quickly while in
some areas, vegetation can take decades to regrow. Machine
Learning (ML) is used in various facets of wildfire science
and supervised ML has recently been used as an application
in assessing the ecological impact of wildfires. In this paper
a method was proposed to quantify the ecological effect of
wildfires by identifying key variables that contribute to veg-
etation regrowth. Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) data collected after the 2013 California
Rim Fire was used to build Random Forests (RF) to predict
the Normalized Burn Ratio (NBR) of the effected area. 13
other spectrometer bands were used as a feature set. The RF
model performed relatively well with a Mean Square Error
of 1.333 and a coefficient of determination of 0.866. Fea-
ture analysis on the Decision Trees of the RF indicated that
Moisture Stress Index (MSI) was the most significant vari-
able from the feature set. By utilizing larger datasets of time-
series remote sensing data, we believe the framework used in
this project can be extended to practical applications to better
understand the driving forces behind post-wildfire recovery.

Introduction
Each year, wildfires are caused from a multitude of causes.
With increasing global temperatures the number of annual
catastrophic wildfires has increased. These fires can pose a
significant threat to wildlife, the environment, property and
even human life. In recent decades researchers have started
to use ML methods to assist in wildfire science. ML methods
have been used to better understand domains such as fire
susceptibility, severity mapping, and wildfire preparedness.
For this paper we will focus on supervised ML methods to
quantify and and better understand variables that drive an
ecological area’s ability to regenerate and regrow in the time
period following a wildfire.

A variety of supervised ML models have been success-
fully used in the application of post-fire regeneration predic-
tion, including Artificial Neural Networks (ANN) and Ran-
dom Forests (RF). For general ecological applications, RF
has become a preferred model due to its flexibility and abil-
ity to handle both categorial data and linear data. And after
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reviewing similar projects and viable datasets we decided to
move away from ANN and focus entirely on RF. The ap-
proach uses a RF model in order to extract relative feature
importance of different stress factors that may impact vege-
tation growth. Our model predicts the Normalized Burn Ra-
tio (NBR) of a spatial area. By analyzing the frequency of
features in top level nodes of the Decision Trees (DT) within
the RF model, and by analyzing the Mean Decrease of Im-
purity (MDI) of the DTs our framework can provide insight
into which variables contribute the most to vegetation recov-
ery. The primitive method can be extended to larger time-
series datasets to provide greater understanding of a post-
wildfire area’s ability to regrow. With this approach agen-
cies could take better care to practice responsible forestry
and agricultural practices, as well as giving us better metrics
by which to measure the overall health of biomes.

1 Background
As technological advances, researchers have improved ac-
cess to data. Further advancements in computer hardware
have opened up new possibilities for applications of ML.
Remote monitoring allows for advanced data collection with
which ML can be utilized to draw new insights.

1.1 Remote Monitoring Techniques
Remote monitoring techniques provide a large amount of
data to help understand the surface of the Earth. There is
a great need to understand how to effectively analyze Earth
surface data to draw conclusions that can help better under-
stand ecosystems, best agricultural practices, and steward-
ship of the Earth’s climate as a whole.

Satellite data is perhaps the most prevalent and has the
advantage of providing consistent and constant time series
measurements. The shortcoming of satellite data is that it
typically only allows for linear analysis and the bands can
have relatively low resolution when compared to methods
like LiDAR. LiDAR sensing techniques are also capable of
providing categorical data that can give insight into the spe-
cific species of plant vegetation in an area by accurately
measuring canopy depth (Debouk et al., 2013). Additional
field measurements like soil samples and in person classi-
fication of plant species are also incredibly useful, however,
the downside of field samples and LiDAR is that datasets are
not continuous and data collection is often more expensive.



There are also a number of agencies that perform remote
monitoring using flyover data collection. While these meth-
ods do not have the continuous time series measurements
as satellite data, they provide greater spatial resolution and
often can provide greater accuracy. Common flyover tech-
niques measure wave lengths reflecting off of the Earth’s
surface by measuring and collecting visible infrared data,
LiDAR data, and MODIS data.

1.2 Random Forests in Ecology
For domain specific applications in ecology, RF have be-
come a favored ML model for researchers. Ecological stud-
ies often require data sets that are both categorical and linear
in nature. RF are useful due to their abilities to handle multi-
ple datasets and analyze variable significance, all while hav-
ing high accuracy (Cutler et al. 2007). Furthermore, RF can
be used for both supervised and unsupervised ML analysis
which can be used in a wide range of applications.

2 Related Work
A large number of studies have been done to better under-
stand potential relationships between forest fires and envi-
ronmental variables. Areas of focus often include severity of
burn, fire susceptibility, fire intensity, and landscape controls
on a fire. There is a general need to develop frameworks that
can merge parametric time-series data with categorical data
and while there are a growing number of studies on post fire
regeneration, this area is lacking.

A review from Environmental Reviews that identified 300
publications relevant to wildfire science, determined that
RF was the most widely used model for post-wildfire re-
growth prediction, and RF also saw the most general success
(Piyush et al. 2020). The report also indicated that ANN has
been known to be adequate in similar applications, but RF
have had excellent historical success with basic ecological
problems dealing with classification and regression (Cutler
et al., 2007).

2.1 Studies Incorporating Regression and Random
Forest
A publication from Ecological Indicators implemented RF
to assign three indicator indices to quantify the regrowth po-
tential of an area following a wildfire. A long-term, mid-
term, and short-term index was generated using RF with
the long-term and mid-term indices proving to be more ac-
curate by including the features of fire traits, post-fire cli-
matic conditions and plant life-history traits (Torres, et al.
2018). The mid-term index used was Recovery Trend In-
dex (RTI). The RTI implementation utilized a Theil-Sens
estimator to map Normalized Difference Vegetation Indices
(NDVI) from time-series satellite data to a regressive slope
value. For the purpose of clarity RTI and Theil-Sens will be
used interchangeably throughout the rest of this paper. The
research from this paper also stresses the importance of in-
cluding a variety of independent variable features in the data
collection process, but proves that RF is an optimal method
for quantifying post-wildfire regrowth using remote sensor
data.

A separate study from Frontiers in Fire Ecology analyzed
the recovery of three separate tree species from different
fires across the Western United States (Bright et al.,2019).
This study used Normalized Burn Ratio (NBR) to label the
RF model, which was ultimately used to predict and better
understand how the three species were recovering. The end
result provided insight into useful features and data collec-
tion techniques.

3 Methodology
Due to the robust nature of RF and its known success rate
with similar application, RF was the model used for this
project. The original scope of this project sought to com-
pute a Theil-Sens RTI from NDVI time series data to use as
a label. Theoretically, a number of supervised ML models
would be able to predict an RTI base on feature attributes,
but they all require a large dataset that is taken consistently
for a period of time to be viable. After spending some time
finding valid datasets, this approach was abandoned and the
model was scaled back. A dataset that included flyover mea-
surements was used for the model and instead of using an
RTI, we used NBR to label the data as this label was used
successfully in the study done by Bright et al. in Frontiers in
Fire Ecology.

3.1 Finding a Significant Wildfire Event
To find a valid dataset we needed a to find a significant
wildfire that had been well studied. The California Rim Fire
was a wildfire that started on August 17, 2013 and would
burn over 400 square miles of forest (Rim Fire Information,
2013). At the time of its occurrence, it was the third largest
wildfire in California’s recorded history. We chose this wild-
fire as the primary source for our project, due to its size, age,
and the high degree of interest it has received from the sci-
entific field since. There has been a great deal of research
on the effects of the Rim fire, the ecological causes behind
the fire, and the area’s recovery. The high degree of inter-
est in the fire translated to a wide breadth of accessible data
and information that we used to train our model, and better
optimize the project.

3.2 Finding a Dataset
We originally looked into two primary datasets to be uti-
lized for this project. The first was a set of data acquired off
Kaggel by multiple authors that all utilize the same source
formatting. Unfortunately, the Kaggel open source data sets
would not prove sufficient for our needs due to a lack of fea-
tures and inconsistency with the time ranges. Our second set
of data was utilizing Landsat data provided through NASA.
This data is available through several client searches open
to the public. Two client searches we used for exploratory
analysis was the USGS EarthExplorer and NASA Earth-
Data. Both client searches allow users to find granularity ge-
ographic areas from specified satellites. For our project we
decided to try to use measurements from Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) satellites due to
their ability to measure vegetation indices.



The NASA EarthData also proved to be inconvenient for
the scope of our project. Not only did it not have enough
variables that were relevant to our RF for feature recogni-
tion, but performing formatting on the data to account for
the distortions between datasets proved to be too time inten-
sive. MODIS passes do not always pass over the same spot
on the globe each time, causing the datasets themselves to
always be distorted by the Earth’s curvature.

Upon further investigation, we came open source data
provided by Oak Ridge National Laboratory’s Distributed
Active Archive Center (ORNL DAAC) which met the needs
of our application.

3.3 ORNL DAAC Dataset

The ORNL DAAC dataset includes a single before and
after flyover collection of MODIS, LiDAR, and Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) measure-
ments and contains more than 200 relevant numerical mea-
surements. Spectrometer bands included measurements like
moisture levels, the presence of stress pigments in the leaves,
and the degree of burn the ground itself suffered. The dataset
also provided uniform geopositional resolution between the
different measurement types, saving us the effort in having
to perform positional corrections.

We chose to use AVIRIS Level 3 measurements taken on
November 11, 2013, approximately three weeks after the last
day of the fire. AVIRIS Level 3 data was chosen because it
includes NBR measurement and most of the other band mea-
surements were ratios and indices that are normalized across
AVIRIS Level 1 and Level 2 measurements. So although our
dataset did not include cumulative time series data, the ex-
amples would be normalized in some way. The AVIRIS data
set was downloaded in the GeoTIFF file format, where each
file included pixel values for a specific spectrometer band.
Each pixel on the image corresponded to the AVIRIS reso-
lution of 14.8 square meters, and the images had 2926x2926
number of pixels. Table 1 shows the 13 bands chosen for the
feature set, as well as NBR, and their abbreviations.

Table 1: AVIRIS Bands Used for Feature Set

AVIRIS L3 Product Band Name
Anthocyanin Reflectance Index 1 ARI1
Anthocyanin Reflectance Index 2 ARI2
Carotenoid Reflectance Index 1 CRI1
Carotenoid Reflectance Index 2 CRI2
Char Soil Index CSI
Enhanced Vegetation Index EVI
Mod. Chlorophyll Absorption Ratio Index mCARI
Mod. Soil Adjusted Vegetation Index mSAVI
Moisture Stress Index MSI
Normalized Burn Ratio NBR
Normalized Difference Nitrogen Index NDNI
Normalized Difference Vegetation Index NDVI
Plant Senescence Reflectance Index PSRI
Water Band Index WBI

3.4 Preprocessing & Cleaning the Data
Upon downloading the data the first step was getting the
data from the 14 GeoTIFF files consolidated into a for-
mat where we could perform analysis and cleaning. The
open-source Geospatial Data Abstraction Library provides
a Python binding with which we used to extract raw val-
ues from the GeoTIFF files. The pixel matrix was flattened
into a 1D array for each file and then placed into columns of
a Comma Separated Values (CSV) file labeled by the band
name. This intermediate step was done so that we always
had the raw values of our dataset easily accessible for trou-
bleshooting purposes. The consolidated AVIRIS data was
loaded into a dataframe using the Python library Pandas.

After consolidating the ORNL DAAC data into a format
we could work with, we began analyzing the data to validate
the measurements and check if normalization was necessary.
Many of the data points were imported as null, NaN, or infi-
nite values, so we first standardized all of the values to NaN
to use consistent computations in Python. To determine if
any of the features required normalization, the raw data for
each feature was plotted as a heat map to represent the spa-
tial image for that measurement.

Figure 1: Spatial Heat Map of Raw Band Measurement

Because the NDNI measurements contained no valid data,
this feature was dropped from the dataset. According to the
ORNL DAAC documentation this can occasionally happen
due to pollutants and aerosols in the air during data collec-
tion.

The minimum, maximum, mean and standard deviations
were also analyzed. If a measurement had a wide range
of values but low resolution on the heat map, it was nor-
malized. Features that included negative and positive values
were normalized using min max normalization to a range of
[-1:1]. Features that only included positive values were min
max normalized to a range of [0:1]. The bands ”NBR” and
”ARI2” were normalized to [-1:1] while the bands ”ARI1”,
”CRI2” and ”CSI” were normalized to [0:1].



Figure 2: Heat Map of Features Normalized

The final step in preparing the data for the RF model
would be performing imputation. The heat maps show that
not every pixel in a measurement has a valid value. This was
by design since we replaced invalid values with NaN. To ac-
count for this a simple imputation was performed on every
feature, where the mean pixel value was calculated and then
placed into the invalid pixels.

3.5 Random Forest Model Approach
With a dataset preprocessed and ready for training we be-
gan to train and fit the RF model. RF uses random data to
generate multiple decision trees. The result of RF is an av-
erage from all decision trees. Algorithm 1 illustrates RF as
defined in Pro Machine Learning Algorithms. The RF ac-
counts for over-fitting and incorrect path selections and the
implementation can be performed with Python’s scikit-learn
library (Ayyadevara, 2018). After building a RF model with
100 DTs, then the same model was trained with 150 DTs
and 200 DTs to validate the results. Once adequate perfor-
mance metrics were achieved, feature importance was ana-
lyzed to make assumptions on the feature set. Figure 3 shows
the overall project architecture.

Algorithm 1: Random Forest

1: Let n = 0.
2: Let output = 0.
3: while n < number of trees do
4: Subset data to build a decision tree
5: Subset features
6: Build decision tree based on table with instances as

rows and features as columns and
7: Predict on test dataset
8: output+ = treeOutput
9: n++

10: end while
11: return output/n

Figure 3: Project Architecture

4 Evaluating the Model
To evaluate the performance of the RF, Mean Square Error
(MSE) and coefficient of determination (R-squared) were
used. With a valid RF model, feature importance was ana-
lyzed by counting the frequency of features present in top
level node’s of the RF’s individual DTs. Mean decrease of
impurity was also used to inspect feature importance.

4.1 Random Forest Performance Metrics
MSE calculates the average squared difference between the
predicted values and the actual values of the label. A lower
MSE value indicates that the regressor is more accurate, with
a MSE of 0 indicating a perfect fit. R-squared is a useful met-
ric that computes the sum of the level of variance in the error
terms divided by the the true sum of squares, subtracted from
one. A R-squared value of 1 indicates a perfect fit. Python li-
braries provide a straight forward way to measure MSE and
R-squared of a regression model.

4.2 Measuring Feature Importance
The first metric used to quantify feature importance was a
manual calculation of the frequency of features present in
the top level, or root nodes of each individual DT. If a feature
is more pervasive in the root nodes, it may suggest that this
feature is driving performance of the RF.

Another method used was MDI, which measures the av-
erage decrease of impurity throughout all of the nodes a DT.
Since the goal of DT is to minimize impurity or heterogene-
ity in the subset generated by the node split, MDI is a use-
ful way to analyze important features in the RF. The Python
library sklearn provides a ”RandomForestRegressor” class
with a built in feature importance attribute and method for
calculating MDI.



5 Results
To validate the performance of the RF three different mod-
els were built, keeping all hyperparameters constant except
for the number of trees. The data was split into subsets of
80% for training and 20% for testing. There appeared to be
no clear improvement in performance from increasing the
number of DTs. Table 2 shows the MSE and R-square across
each run. The average R-square value was 0.886 and the av-
erage MSE was 1.403. From these metrics, we can see the
RF model used achieved relatively high performance in pre-
dicting NBR.

Table 2: RF Model Performance

# of DTs MSE R-squared
100 1.344 0.885
150 1.532 0.887
200 1.333 0.886

5.1 Feature Importance
The first metric taken to quantify feature importance was the
frequency of top level nodes in the individual trees of the RF.

Figure 4: Frequency of Features in Top Level Nodes

From this testing, we see that the bands ”MSI”, ”CRI1”
and ”mCARI” were the most frequent features in top level
nodes. The high rates of these features may indicate that they
drive the performance of the RF since the root node split has
a large influence on a DT. The bands ”NDVI”, ”CSI”, and
”EVI” are not present in any of the top level nodes, sug-
gesting that these features may have a lesser impact on RF
performance.

Mean Decrease of Impurity was the second metric used to
analyze feature importance. The mean of this measurement
was collected as well as the standard deviation across each
feature. Figure 5 plots the mean as bars and the standard
deviation as vertical lines.

Figure 5: RF MDI

To observe the overall importance between the two met-
rics, we took an average of both to see which bands had the
highest and lowest scores.

Figure 6: Overall Feature Importance

Some observations of note are the fact that NDVI had a
frequency of 0 and the lowest overall importance of all the
features for determining the model. NDVI is essentially a
measure of an area’s ”greenness”, a value determined by the
ratio of green light reflecting from an area compared to the
amount of red light being reflected by the same area, and
is one of the most common metrics available from satellite
imagery. From similar projects, NDVI is typically a signif-
icant indicator for vegetation health, but in our application,
the measurement was likely skewed as insignificant since we
took a single measurement post-fire, rather than a cumula-
tive measurement before and after the fire. This is partially a
limitation of the abilities of the AVIRIS data, and highlights
the importance of consistent time series data collection to
inform proper models.

The variable with the highest importance was Moisture
Stress Index (MSI) which not only had the highest over-
all score, but also had the lowest spread between the two
metrics amongst high scoring variables. MSI measures the
amount of water being stored by the plants and was the
greatest factor in predicting NBR, which suggests it is a key



variable in vegetation regrowth. Interestingly, another band
that measures water content – Water Band Index (WBI) –
had very low importance scores.

Modified Chlorophyll Absorption Ratio Index (mCARI),
and Carotenoid Reflectance Index 1 (CRI1) had high overall
scores, but there was a significant deviation between the two
metrics. Performing further analysis may help explain the
variance of the two metrics in these bands. The Carotenoid
Reflectance Index is a measure of a pigment that plant leaves
express when they are undergoing stress, with the CRI1
value being more tuned to low-to-medium concentrations
and the CRI2 more accurately measuring high carotenoid
concentrations. This finding suggests that taking high res-
olution measurements of low concentrations of caratenoid
may be more useful than high concentration measurements.

It is important to note that these relationships should not
be considered conclusive in determining variable impor-
tance due to the nature of the dataset. Given a larger dataset
with measurements normalized overtime, the feature impor-
tance could have different results.

6 Suggestions for Future Applications
While the framework used in this project is primitive, we be-
lieve it could be extended to provide valuable insight in real
world applications by using large data sets that cover mea-
surements taken over a continuous time period before and
after a fire. To label this dataset we would recommend using
a basic regression method such as Stochastic Gradient De-
scent (SGD) or Theil-Sens regression. Thiel-Sens regression
is not sensitive to bias in the feature set and has been used
on similar projects.(Yang et al., 2021).

θ = median
NDV Ii −NDV Ij

i− j
,∀i < j (1)

In a Thiel-Sens regression (equation 1), the i and j val-
ues are timestamps for the data being operated over in the
set. So, when considering the most recent timestamp j, the
Thiel-Sens θ considers all previous timestamps for which
there is data, ∀i, and uses all of them to compute the value.
By utilizing this technique on a time cumulative measure-
ment like NBR or NDVI, a label could be used for the RF.

Different types of linear data and categorical data should
also be considered for future projects. Linear variables like
topographical and weather data could be useful. Canopy
height measurements should also be considered to justify
the values of vegetation indices. LiDAR is a remote sens-
ing technique that can collect handle canopy height. Finally,
field measurements can be interpolated with time series data
to include features like plant species and soil content present
in a spatial area.

7 Conclusion
In this paper, we proposed a ML method to quantify and
better understand the driving variables contributing to post
wildfire vegetation regrowth. 14 AVIRIS bands from the
ORNL DAAC 2013 Rim Fire data set were used. The data
was preprocessed and cleaned and NBR was used as a pre-
dictor for a RF model. Feature frequency and Mean De-

crease in Impurity were used to analyze feature importance
of the RF model. This framework can be extend to other
applications. But the work doesn’t end here. These trends
may vary over time, with some variables being more im-
portant to short term regrowth, and others more important
to long term regrowth. Learning these trends may require
more variables collected across a longer time frame. There
may be even more types of variables to be considered, like
wildlife populations and temperature ranges, that this model
could further be developed to incorporate. But, so far, our
model has worked, and achieved its goals, even if there exist
more peaks to surmount. We input data, and from it, patterns
emerged. We turned assumptions into demonstrable proofs,
and figures into trends. There is more work to be done, but
our model is a step along that path, a rung on the ladder.
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